08.128.742 Quantum Field Theory III The Standard Model and Electroweak Theory

Homework set 4

Due January 14, 2021; e-mail (photo or scan) to yu001@uni-mainz by start of discussion session Please note how long it took you to solve each problem

- 4-1, 20 pts. Design a collider analysis to measure the W boson mass in the scattering process $pp \to W^{\pm}X, W^{\pm} \to \ell^{\pm}\nu$, where $\ell = e$ or μ . What collider observable can you construct and how do you extract the W boson mass? Compare with the published ATLAS analysis (led by Prof. Matthias Schott of JGU Mainz), arXiv:1701.07240. Why does the collider observable in the $\ell^{\pm}\nu$ final state have better mass resolution than the simple dijet invariant mass for the $W \to jj$ final state?
- 4-2, 80 pts. Consider Higgs boson production at the LHC. We will focus on understanding complications about extracting Higgs couplings at *pp* colliders.
 - A, 10 pts. Draw and list the five most dominant production modes at $\sqrt{s} = 13$ TeV and their cross sections.
 - B, 20 pts. The κ -framework is a straightforward modification of Higgs couplings to test experimentally for non-SM scattering rates of the 125 GeV Higgs boson. In this framework, all tree-level couplings of the Higgs boson are multiplied by their own κ_i , while the two leading loop-induced couplings of hgg and $h\gamma\gamma$ are also multiplied by κ_g and κ_γ , respectively. The SM case requires all $\kappa_i = 1$, while an experimental result favoring $\kappa_i \neq 1$ would indicate the presence of new physics. Write the Feynman rules for hgg, $h\gamma\gamma$, hW^+W^- , hZZ, and hbb in the κ framework.
 - C, 20 pts. Determine the cross section dependence on κ_i for $gg \to h \to \gamma\gamma$ in the κ framework. Given a measurement of this event rate, can you individually determine the two corresponding κ parameters? What happens when you include
 a measured cross section for $gg \to h \to ZZ^*$? Does the situation improve when
 you add more decay modes or more production modes?
 - D, 20 pts. Identify the (non-unique) set of necessary assumptions in order to extract individual κ couplings from LHC data. *Hint:* Consider the role of the Higgs width. In general, the Higgs could decay to non-SM final states, which would be an additional contribution to the total Higgs width, Γ_{BSM} .
 - E, 10 pts. Match the κ_b coupling modifier to the coefficient of a dimension-6 operator (from HW 2-2). In general, the κ -framework is a restricted subset of dimension-6 effective operators that affect Higgs physics.

F, Bonus, 20 pts. At an e^+e^- collider, the additional kinematic certainty from the initial state allows an *inclusive* measurement of Higgs production in the $e^+e^- \rightarrow Zh$ channel. What observable gives this inclusive rate? How does having an inclusive rate for Higgs production now allow the κ -framework system of equations to close? *Hint:* Consider the system of equations from the inclusive rate measurement and the $e^+e^- \rightarrow Zh$, $h \rightarrow ZZ^*$ decay. This technique is known as the "recoil-mass" measurement and is a primary motivation for an e^+e^- Higgs factory.