08.128.809 Theoretische Elementarteilchenphysik Quantum Field Theory II

Homework set 1

Due April 23, 2021; e-mail (photo or scan) to yu001@uni-mainz by start of discussion session

Please note how long it took you to solve each problem

- 1-1, 15 pts. (A) For quantum field theories in D = 2 (1+1), D = 3 (2+1), and D = 6 (5+1) dimensions (# spatial + # time dimensions), give the scaling dimension of scalar fields, fermions, and vector fields. (B) Characterize the following Lagrangian terms as super-renormalizable, renormalizable, or non-renormalizable in each D = 2, 3, and 6: cubic scalar interaction $\lambda \phi^3$, Yukawa coupling $y\phi\overline{\psi}\psi$, and QED gauge coupling in D = 2, 3, and 6 dimensions. For each interaction, specify the scaling dimension of the corresponding coupling constant. (Starting hint: recall that Lagrangian kinetic terms always involve two spacetime derivatives for bosons and one spacetime derivative for fermions.)
- 1-2, 25 pts Demonstrate Furry's theorem (see problem 10.1 in Peskin and Schroeder) that the one-loop matrix element for three external photons in QED vanishes.
- 1-3, 35 pts Problem 10.2 of Peskin and Schroeder. Consider the pseudoscalar Yukawa Lagrangian

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - \frac{1}{2} m^2 \phi^2 + \bar{\psi} (i \partial \!\!\!/ - M) \psi - i y \phi \bar{\psi} \gamma^5 \psi , \qquad (1)$$

where ϕ is a real scalar field and ψ is a Dirac fermion. (A) Determine the superficially divergent amplitudes and the Feynman rules for renormalized perturbation theory. Specify the necessary counterterms. You should find a superficially divergent 4ϕ amplitude, which requires a Lagrangian term,

$$\delta \mathcal{L} = \frac{\lambda}{4} \phi^4$$

and a matching counterterm. Are other interactions required? (B) Compute the pole as $D \rightarrow 4$ of each counterterm to one-loop order and specify the renormalization conditions.

1-4, 25 pts Model with multiple U(1) gauge symmetries. (A) Write the most general, renormalizeable, gauge-invariant Lagrangian for a $U(1) \times U(1)$ gauge symmetry theory with the following fields and charges:

_

Fields and gauge symmetry charges	$U(1)_{1}$	$U(1)_{2}$
ϕ_1 (Complex scalar field)	1	0
ϕ_2 (Complex scalar field)	1	-1
ϕ_3 (Complex scalar field)	0	2
ψ_1 (Fermion)	1/2	0
ψ_2 (Fermion)	0	-1
ψ_3 (Fermion)	1/2	1/2
ψ_4 (Fermion)	3/2	-1

The Lagrangian should include all appropriate covariant kinetic terms, mass terms, and possible non-gauge interactions. The Lagrangian should also include the gauge fields for the two U(1) symmetries (you can call them A_{μ} and B_{μ} , respectively). (B) Draw all the possible 1-loop contributions for the vacuum polarization diagrams of the two U(1) gauge fields. Note that this includes the diagonal $A_{\mu}-A_{\nu}$ and $B_{\mu}-B_{\nu}$ wavefunction renormalizations as well as the mixed $A_{\mu}-B_{\nu}$ loop.