08.128.809 Theoretische Elementarteilchenphysik
Quantum Field Theory II

Homework set 3

Due June 3, 2020, by 14:00

Please note how long it took you to solve each problem!

Monday, June 1, 2020 is a holiday. We will have the discussion session for HW
3 on Monday, June 8.

2-3, 30 pts. (repeat) Using the functional method, derive the Feynman rules in momentum space for the
following interaction vertices:

A.
B.

C.

D, Extra credit, 10 pts.

L= \¢*
L= gQQS*gZ)AMA“. Note that for the purposes of functional methods, vector fields
are simply collections of scalar fields indexed by an extra Lorentz index.

L = gfapc0,ALA» bA¥ ¢ For convenience, define all momenta to flow into the
vertex, and assume fu;. is totally antisymmetric under interchange of any two
[group space| indices.

L= % g%( fe“bAZAl;)( fecdAm €AY 4) . Again, assume foup is totally antisymmetric
under interchange of any two [group space] indices.

3-1, 25 pts. Using the functional method, derive the Feynman rules in momentum space for the
following interaction vertices:

A.
B.

L = gy, At
L = ydiph + hec.

3-2, 75 pts. The concept of dimensional transmutation is one of the most important and involved
topics in quantum field theory. We will mainly focus on the question of how a dimen-
sionful scale arises in a physical theory when the fundamental bare Lagrangian only
contains dimensionless couplings.

A, 20 pts.

B, 25 pts.

C, 30 pts.

Read “Dimensional Analysis in Field Theory,” P. M. Stevenson. A PDF of the
manuscript is available on Reader. In your own words, write a paragraph or
two explaining how a dimensional scale can arise when the Lagrangian has no
dimensionful couplings.

Read “Radiative Corrections as the Origin of Spontaneous Symmetry Breaking,”
by S. Coleman and E. Weinberg. A PDF of the manuscript is available on Reader.
In your own words, based on the discussion of massless scalar QED in section 4,
write a paragraph or two explaining how a phase change in the theory can arise
by a perturbative calculation.

The full calculation is done in sections II and III of the Coleman and Weinberg
paper and as an exercise on pages 469-470 of Peskin and Schroeder. We will



not reproduce the full calculation but instead check the most important conse-
quences. We start with the scalar QED Lagrangian:

1 A 2
L= —1FuF" +(D,0) Do —m?slo - = (¢l6) ", (1)

with Dy, = 9, + ieA,,.

i, 15 pts.

ii, 15 pts.

iii, Extra credit, 10 pts.

Expand the Lagrangian assuming the scalar field ¢ obtains a vacuum ex-
pectation value (VEV) (¢) = ¢p. The remaining scalar and pseudoscalar
degrees of freedom of the complex scalar field ¢ can be parametrized as o
and 7. This result is encoded by plugging in

¢ = ¢o+ —= (0 +im) (2)

1
V2
into the Lagrangian. Setting m? = —u? < 0, solve for ¢g in terms of x and
A. Identify the mass term for the A, vector. This is the first example of
the Higgs mechanism, where the nonzero VEV of the scalar field ¢ leads
to a spontaneous breaking of the QED gauge symmetry and a mass for the
photon.

Given the form of the potential in equation 4.5 of Coleman and Weinberg,
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Vi=g0et (1152772 * 647r2> e \l83p — % ) ®)

calculate the VEV of ¢, by minimizing V. Note that the potential (which
includes the relevant tree-level terms from the Lagrangian in equation 4.1)
does not have a tree-level mass for ¢.. To distinguish the behavior between
when (¢.) = 0 and (¢.) # 0, specify the necessary condition on the relative
magnitude of A and e.

Taking the S-functions for e and A from Peskin and Schroeder,

3
e 1
4872 Pr = 2472

Be (5A% — 18e*A + 5de?) | (4)
sketch the renormalization group flows in the (), e?) plane. You should find
that every trajectory passes through the condition from part ii that marks
when ¢, acquires a vev.



