
08.128.809 Theoretische Elementarteilchenphysik
Quantum Field Theory II

Homework set 3

Due June 3, 2020, by 14:00
Please note how long it took you to solve each problem!
Monday, June 1, 2020 is a holiday. We will have the discussion session for HW
3 on Monday, June 8.

2-3, 30 pts. (repeat) Using the functional method, derive the Feynman rules in momentum space for the
following interaction vertices:

A. L = λφ4

B. L = g2φ∗φAµA
µ. Note that for the purposes of functional methods, vector fields

are simply collections of scalar fields indexed by an extra Lorentz index.

C. L = gfabc∂µA
a
νA

µ, bAν, c. For convenience, define all momenta to flow into the
vertex, and assume fabc is totally antisymmetric under interchange of any two
[group space] indices.

D, Extra credit, 10 pts. L = 1
4g

2(feabAaµA
b
ν)(fecdAµ, cAν, d). Again, assume fabc is totally antisymmetric

under interchange of any two [group space] indices.

3-1, 25 pts. Using the functional method, derive the Feynman rules in momentum space for the
following interaction vertices:

A. L = gψ̄γµA
µψ

B. L = yφψ̄ψ + h.c.

3-2, 75 pts. The concept of dimensional transmutation is one of the most important and involved
topics in quantum field theory. We will mainly focus on the question of how a dimen-
sionful scale arises in a physical theory when the fundamental bare Lagrangian only
contains dimensionless couplings.

A, 20 pts. Read “Dimensional Analysis in Field Theory,” P. M. Stevenson. A PDF of the
manuscript is available on Reader. In your own words, write a paragraph or
two explaining how a dimensional scale can arise when the Lagrangian has no
dimensionful couplings.

B, 25 pts. Read “Radiative Corrections as the Origin of Spontaneous Symmetry Breaking,”
by S. Coleman and E. Weinberg. A PDF of the manuscript is available on Reader.
In your own words, based on the discussion of massless scalar QED in section 4,
write a paragraph or two explaining how a phase change in the theory can arise
by a perturbative calculation.

C, 30 pts. The full calculation is done in sections II and III of the Coleman and Weinberg
paper and as an exercise on pages 469-470 of Peskin and Schroeder. We will
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not reproduce the full calculation but instead check the most important conse-
quences. We start with the scalar QED Lagrangian:

L = −1

4
FµνF

µν + (Dµφ)†Dµφ−m2φ†φ− λ

6

(
φ†φ

)2
, (1)

with Dµ = ∂µ + ieAµ.

i, 15 pts. Expand the Lagrangian assuming the scalar field φ obtains a vacuum ex-
pectation value (VEV) 〈φ〉 = φ0. The remaining scalar and pseudoscalar
degrees of freedom of the complex scalar field φ can be parametrized as σ
and π. This result is encoded by plugging in

φ = φ0 +
1√
2

(σ + iπ) (2)

into the Lagrangian. Setting m2 = −µ2 < 0, solve for φ0 in terms of µ and
λ. Identify the mass term for the Aµ vector. This is the first example of
the Higgs mechanism, where the nonzero VEV of the scalar field φ leads
to a spontaneous breaking of the QED gauge symmetry and a mass for the
photon.

ii, 15 pts. Given the form of the potential in equation 4.5 of Coleman and Weinberg,

V =
λ

4
φ4c +

(
5λ2

1152π2
+

3e4

64π2

)
φ4c

(
log

φ2c
M2
− 25

6

)
, (3)

calculate the VEV of φc by minimizing V . Note that the potential (which
includes the relevant tree-level terms from the Lagrangian in equation 4.1)
does not have a tree-level mass for φc. To distinguish the behavior between
when 〈φc〉 = 0 and 〈φc〉 6= 0, specify the necessary condition on the relative
magnitude of λ and e.

iii, Extra credit, 10 pts. Taking the β-functions for e and λ from Peskin and Schroeder,

βe =
e3

48π2
, βλ =

1

24π2
(
5λ2 − 18e2λ+ 54e4

)
, (4)

sketch the renormalization group flows in the (λ, e2) plane. You should find
that every trajectory passes through the condition from part ii that marks
when φc acquires a vev.
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