
08.128.809 Theoretische Elementarteilchenphysik
Quantum Field Theory II

Homework set 2

Due May 18, 2020
Please note how long it took you to solve each problem!

2-1, 20 pts. Using Feynman rules derived from the Lagrangian:

L = if̄1/∂f1 + if̄2/∂f2 + if̄3/∂f3 −m1f̄1f1 −m2f̄2f2 −m3f̄3f3

− 1

4
(∂µAν − ∂νAµ)2 − 1

4
(∂µW

+
ν − ∂νW+

µ )(∂µW
−
ν − ∂νW−

µ )

+Q2ef̄2 /Af2 +Q3ef̄3 /Af3 + g(f̄3 /W
+
PLf1 + h.c.) ,

write the matrix elements corresponding to the diagrams in Fig. 1. Note: You do not
need to evaluate any of the matrix elements. Also, because there is no mass term for
either vector, you can use the massless vector propagator from QED.
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Figure 1: (A.) Vector coupling to two fermions, Aµ → f2f̄2. (B.) Charged current scattering,
f1f̄3 → f1f̄3 via exchange of W+. (C.) The penguin diagram. You can think of the penguin
diagram as a one-loop vertex correction to a vector current where the external vector is
allowed to propagate off-shell.

2-2, 25 pts. Using Feynman rules derived from the Lagrangian:

L = if̄1/∂f1 + if̄2/∂f2 + if̄3/∂f3 −m1f̄1f1 −m2f̄2f2 −m3f̄3f3

− 1

4
(∂µAν − ∂νAµ)2 − 1

4
(∂µW

+
ν − ∂νW+

µ )(∂µW
−
ν − ∂νW−

µ )

+Q2ef̄2 /Af2 +Q3ef̄3 /Af3 + g cos θ(f̄3 /W
+
PLf1 + h.c.) + g sin θ(f̄2 /W

+
PLf1 + h.c.) ,

draw all the diagrams for f2f̄3 → f2f̄3 scattering at tree-level and one-loop. Be sure to
include diagrams that cross internal propagator legs. For example, you should have
one diagram, known as the box diagram, as shown here: (This diagram is central
to understanding the phenomenology of SM mesons.) For the box diagram in Fig. 2,
write the matrix element. Does the loop integral superficially converge or diverge? For
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Figure 2: The box diagram.

all of your diagrams, group them according to the dependence on the gauge couplings
e and g. Do all diagrams within each class (diagrams that share the same parametric
dependence on e and g) share the same superficial degree of divergence? What physical
condition ensures sensitivity to UV divergences vanishes? (Extra credit) If you are
ambitious, calculate the leading loop-momentum dependence of each diagram within
each class and verify that the UV divergence cancels, leaving only a finite correction
(you may need to introduce a mass for each gauge boson to regulate IR divergences).

2-3, 30 pts. Using the functional method, derive the Feynman rules in momentum space for the
following interaction vertices:

A. L = λφ4

B. L = g2φ∗φAµA
µ. Note that for the purposes of functional methods, vector fields

are simply collections of scalar fields indexed by an extra Lorentz index.

C. L = gfabc∂µA
a
νA

µ, bAν, c. For convenience, define all momenta to flow into the
vertex, and assume fabc is totally antisymmetric under interchange of any two
[group space] indices.

D, Extra credit, 10 pts. L = 1
4g

2(feabAaµA
b
ν)(fecdAµ, cAν, d). Again, assume fabc is totally antisymmetric

under interchange of any two [group space] indices.

2-4, 25 pts. A. Derive the β-function and the anomalous dimension γ of the fermion field and
photon field in QED to leading dependence on the gauge coupling constant e.
The calculation is outlined on p. 416 of Peskin and Schroeder.

B. Running couplings in QED. In the Standard Model, the QED coupling is defined
by the fine structure constant α = e2/(4π). At low momentum transfer (such as
the scale of the electron mass, 511 keV), the fine structure constant is measured
to be α ≈ 1/137. With the beta function of e from part A, what is the scale
where QED becomes non-perturbative? You can define this scale roughly by the
energy scale when α→ 1, which leads to a breakdown in perturbativity.
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