08.128.165 Theorie 6a, Relativistische Quantenfeldtheorie

Quantum Field Theory I

Felix Yu and Prisco Lo Chiatto, Martin Mohajed

Homework set 8

Due June 26, 2024 by start of lecture.

Please note how long it took you to solve each problem.

8-1, 50 pts. Practice with transcribing Feynman diagrams into matriz elements. Use the following
Feynman rules for interactions:

Figure 1: Feynman rules in Yukawa theory and A¢*/4! theory.

The Lagrangian is

L= S0 — G2 + i) — myis
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(1)
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With these momentum-space Feynman rules, write the corresponding matrix elements
for the following diagrams. If the momenta are not labeled, be sure to label them

appropriate in your diagram, ensuring momentum conservation at each vertex.

A, 5 pts.
B, 5 pts.
C, 10 pts.
D, 10 pts.
E, 10 pts.
F, 10 pts.

Scalar propagator correction in ¢* theory.

Scalar self-scattering in ¢* theory.

Fermion propagator correction in Yukawa theory.

Scalar propagator correction in Yukawa theory.

Scalar scattering into fermions in Yukawa theory.

Fermion scattering into scalars in Yukawa theory.
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D, 10 pts. E, 10 pts. F, 10 pts.

8-2, 30 pts. Mandelstam variables. For 2-to-2 scattering, with incoming momenta p; and po and
outgoing momenta ps and py, we can define the three Mandelstam kinematic invari-

ants:
s = (p1+1p2)” = (p3 + pa)’ (3)
t=(p1—p3)® = (pa — p2)* (4)
u=(p —]94)2 = (p3 —p2)2 . (5)

Here, p; and po point into the collision vertex, while p3 and ps point away from the
collision vertex, and we require p; + ps = p3 + p4 for four-momentum conservation.
Aside: If you look at all one loop-level diagrams in A\¢* theory, you can distinguish the
s-channel, t-channel, and w-channel diagrams by the corresponding flow of the loop
momenta.

A, 15 pts. Given that the four external particles are on-shell, pg = m?, derive the condition
that s+t +u =m?} +m3 +m3 + m7.

B, 15 pts. In the center of mass frame, it is convenient to align p; and ps to be along the
Z axis and then set p3 and ps back-to-back at an angle 0 relative to the +2
direction. An azimuthal rotation is sufficient to ensure p3 and p4 lie in the plane
spanned by & and Z. Thus, with

p1 = (B, |p1|2) ,p2 = (B2, —|p1l2) , (6)
p3 = (E3,|p3|sin0,0, |p3| cos ) , ps = (Fy, —|p3|sin 6,0, —[p3|cos ) , (7)

give explicit expressions for s, ¢, and v in terms of 6 only in terms of the energies
and masses of the four individual particles.



8-3, 20 pts.

8-4, 20 pts.

Calculation shortcuts for matrix elements involving fermions. When we consider cross
sections involving fermions, we typically do not consider a specific spin orientation of
either initial state or final state fermions. As a consequence, we will generally sum
over possible spins of fermion spinors. We will thus make extensive use of the following
identities.

> W (p)u(p) =p+ml, (8)
> v (p)e*(p) =p—ml . (9)

S

Verify these identities by explicit calculation.

Extra credit Kallen-Lehmann spectral density and matching one-particle states.
Read sections 10.2, 10.3 and 10.7 of Weinberg, Quantum Field Theory, Volume 1
(available on Moodle). In your own words, write a paragraph explaining the proce-
dure to relate one-particle momentum states in the free theory to one-particle mo-
mentum states in an interacting theory. You can start with the Lehmann-Symanzik-
Zimmermann reduction formula as given, but you should also explain the impor-
tance of concepts like poles in the amplitude, mass and wavefunction renormaliza-
tion, and the possibility of non-one-particle states via the Kallén-Lehmann spec-
tral density. Note: Weinberg uses the opposite sign metric compared to our con-
vention in this course. We use g, = diag(1,—1,—1,—1), while Weinberg uses
9w = diag(—1,+1,+1,+1). So, the four-vector dot products will all have the “wrong
sign” compared to our notation.



