08.128.165 Theorie 6a, Relativistische Quantenfeldtheorie Quantum Field Theory I

Felix Yu and Prisco Lo Chiatto and Martin Mojahed

Homework set 3

Due May 15, 2024 by start of lecture. Please note how long it took you to solve each problem.

3-1, 40 pts. The Lorentz group. Read section 3.1 of Peskin and Schroeder (and refer to Lecture 2 notes as needed). The generators of the Lorentz group $J^{\mu\nu}$ obey the commutation relations

$$[J^{\mu\nu}, J^{\rho\sigma}] = i \left(g^{\nu\rho} J^{\mu\sigma} - g^{\mu\rho} J^{\nu\sigma} - g^{\nu\sigma} J^{\mu\rho} + g^{\mu\sigma} J^{\nu\rho} \right) . \tag{1}$$

We can furnish specific representations by assigning $J^{\mu\nu}$ to different mathematical objects that obey the above commutation relations.

- A, 6 pts. How many generators are in the Lorentz group (for 3+1 spacetime dimensions)? What Lorentz transformations do they correspond to?
- B, 10 pts. Demonstrate that $J^{\mu\nu} = L^{\mu\nu}$, with $L^{\mu\nu} = i(x^{\mu}\partial^{\nu} x^{\nu}\partial^{\mu})$, is a faithful representation by verifying that $L^{\mu\nu}$ obeys the commutation relations.
- C, 10 pts. Demonstrate that $J^{\mu\nu} = \mathcal{J}^{\mu\nu}$, with $(\mathcal{J}^{\mu\nu})_{\alpha\beta} = i \left(\delta^{\mu}_{\alpha} \delta^{\nu}_{\beta} \delta^{\mu}_{\beta} \delta^{\nu}_{\alpha} \right)$ is also a faithful representation. This is known as the vector representation, since the corresponding 4×4 matrices act on 4-vectors.
- D, 14 pts. For the vector representation, evaluate the explicit form of the transformation matrix $U = \exp\left(-\frac{i}{2}\omega_{\mu\nu}\mathcal{J}^{\mu\nu}\right)$ for the following special cases:
 - i, 7 pts. $\omega_{13} = -\omega_{31} = \theta$, $\omega_{\mu\nu} = 0$ otherwise. Which axis of rotation does this correspond to?
 - ii, 7 pts. $\omega_{03} = -\omega_{30} = \beta$, $\omega_{\mu\nu} = 0$ otherwise. What boost does this correspond to?
- 3-2, 12 pts. Spinor space. Use the explicit form of the Pauli matrices to compute the eigenvalues of $p \cdot \sigma$ and $p \cdot \bar{\sigma}$, where $\sigma^{\mu} = (1, \bar{\sigma})$ and $\bar{\sigma}^{\mu} = (1, -\bar{\sigma})$. Show that for an on-shell particle $(p^2 = m^2, p^0 > 0)$ that the eigenvalues are always positive. Obtain the explicit form of the spinor $u_s(p)$ for a particle moving in the $+\hat{x}$ direction.
- 3-3, 12 pts. Gordon identity (problem 3.2 of Peskin and Schroeder). Derive the Gordon identity,

$$\bar{u}_r(p')\gamma^{\mu}u_s(p) = \bar{u}_r(p')\left(\frac{p'^{\mu} + p^{\mu}}{2m} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}\right)u_s(p)$$
(2)

for q = p' - p. You can use the constraint $(p - m)u_s(p) = 0$ on the spinor from the Dirac equation.

- 3-4, 12 pts. Lorentz transformations of bilinear spinor contractions. Given that $\Lambda_{1/2}^{-1}\gamma^{\mu}\Lambda_{1/2} = \Lambda^{\mu}{}_{\nu}\gamma^{\nu}$ for the Dirac matrices γ^{μ} and defining $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = -\frac{i}{4}\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}$, show that under a Lorentz transformation
 - A, 6 pts. $\bar{\psi}\gamma_5\psi \rightarrow \det(\Lambda)\bar{\psi}\gamma_5\psi$,
 - B, 6 pts. $\bar{\psi}\gamma^{\mu}\gamma_5\psi \rightarrow \det(\Lambda)\Lambda^{\mu}{}_{\nu}\bar{\psi}\gamma^{\nu}\gamma_5\psi$.

[Aside: The first fermion bilinear is a pseudoscalar contraction, and the second fermion bilinear is a pseudovector contraction. In general, $\det(\Lambda) = +1$ for continuous Lorentz transformations, but we can also have $\det(\Lambda) = -1$ if we perform a discrete Lorentz transformation such as a spatial reflection (known as parity).]

- 3-5, 24 pts. Practice with Dirac algebra (part 1). Evaluate the following products of γ matrices with contracted indices. (Hint: See equation 5.9 of Peskin and Schroeder for some solutions.)
 - A, 4 pts. $\gamma^{\mu}\gamma_{\mu}$
 - B, 4 pts. $\gamma^{\mu}\gamma^{\nu}\gamma_{\mu}$
 - C, 4 pts. $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma_{\mu}$
 - D, 4 pts. $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{\mu}$
 - E, 4 pts. $(\gamma_5)^2$
 - F, 4 pts. Define

$$P_L = \frac{1_{4 \times 4} - \gamma_5}{2} \tag{3}$$

$$P_R = \frac{1_{4 \times 4} + \gamma_5}{2} \ . \tag{4}$$

Show that $(P_L)^2 = P_L$, $(P_R)^2 = P_R$, and $P_L P_R = 0$.