
08.128.165 Theorie 6a, Relativistische Quantenfeldtheorie
Quantum Field Theory I

Felix Yu and Alexey Kivel, Julien Laux

Homework set 9

Due June 21, 2021; e-mail (photo or scan) to yu001@uni-mainz.de by start of
lecture.
Please note how long it took you to solve each problem.

9-1, 50 pts. Practice with transcribing Feynman diagrams into matrix elements. Use the following
Feynman rules for interactions:

= −iy = −iλ

Figure 1: Feynman rules in Yukawa theory and λϕ4/4! theory.

The Lagrangian is

L =
1

2
(∂µϕ)

2 − 1

2
m2

sϕ
2 + ψ̄(i/∂)ψ −mf ψ̄ψ (1)

− yϕψ̄ψ − λ

4!
ϕ4 . (2)

With these momentum-space Feynman rules, write the corresponding matrix elements
for the following diagrams. If the momenta are not labeled, be sure to label them
appropriate in your diagram, ensuring momentum conservation at each vertex.

A, 5 pts. Scalar propagator correction in ϕ4 theory.

B, 5 pts. Scalar self-scattering in ϕ4 theory.

C, 10 pts. Fermion propagator correction in Yukawa theory.

D, 10 pts. Scalar propagator correction in Yukawa theory.

E, 10 pts. Scalar scattering into fermions in Yukawa theory.

F, 10 pts. Fermion scattering into scalars in Yukawa theory.
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C, 10 pts.

D, 10 pts. E, 10 pts. F, 10 pts.

9-2, 30 pts. Mandelstam variables. For 2-to-2 scattering, with incoming momenta p1 and p2 and
outgoing momenta p3 and p4, we can define the three Mandelstam kinematic invari-
ants:

s ≡ (p1 + p2)
2 = (p3 + p4)

2 (3)

t ≡ (p1 − p3)
2 = (p4 − p2)

2 (4)

u ≡ (p1 − p4)
2 = (p3 − p2)

2 . (5)

Here, p1 and p2 point into the collision vertex, while p3 and p4 point away from the
collision vertex, and we require p1 + p2 = p3 + p4 for four-momentum conservation.
Aside: If you look at all one loop-level diagrams in λϕ4 theory, you can distinguish the
s-channel, t-channel, and u-channel diagrams by the corresponding flow of the loop
momenta.

A, 15 pts. Given that the four external particles are on-shell, p2i = m2
i , derive the condition

that s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4.

B, 15 pts. In the center of mass frame, it is convenient to align p1 and p2 to be along the
ẑ axis and then set p3 and p4 back-to-back at an angle θ relative to the +ẑ
direction. An azimuthal rotation is sufficient to ensure p3 and p4 lie in the plane
spanned by x̂ and ẑ. Thus, with

p1 = (E1, |p⃗1|ẑ) , p2 = (E2,−|p⃗1|ẑ) , (6)

p3 = (E3, |p⃗3| sin θ, 0, |p⃗3| cos θ) , p4 = (E4,−|p⃗3| sin θ, 0,−|p⃗3| cos θ) , (7)

give explicit expressions for s, t, and u in terms of θ and the energies and masses
of the four individual particles.
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9-3, 20 pts. Calculation shortcuts for matrix elements involving fermions, I. When we consider
cross sections involving fermions, we typically do not consider a specific spin orienta-
tion of either initial state or final state fermions. As a consequence, we will generally
sum over possible spins of fermion spinors. We will thus make extensive use of the
following identities. ∑

s

us(p)ūs(p) = /p+m1 , (8)∑
s

vs(p)v̄s(p) = /p−m1 . (9)

Verify these identities by explicit calculation.

9-4, 20 pts. Extra credit Kallen-Lehmann spectral density and matching one-particle states.
Read sections 10.2, 10.3 and 10.7 of Weinberg, Quantum Field Theory, Volume 1
(available on Moodle). In your own words, write a paragraph explaining the proce-
dure to relate one-particle momentum states in the free theory to one-particle mo-
mentum states in an interacting theory. You can start with the Lehmann-Symanzik-
Zimmermann reduction formula as given, but you should also explain the impor-
tance of concepts like poles in the amplitude, mass and wavefunction renormaliza-
tion, and the possibility of non-one-particle states via the Källén-Lehmann spec-
tral density. Note: Weinberg uses the opposite sign metric compared to our con-
vention in this course. We use gµν = diag(1,−1,−1,−1), while Weinberg uses
gµν = diag(−1,+1,+1,+1). So, the four-vector dot products will all have the “wrong
sign” compared to our notation.
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