08.128.165 Theorie 6a, Relativistische Quantenfeldtheorie Quantum Field Theory I

Felix Yu and Alexey Kivel, Julien Laux

Homework set 4

Due May 10, 2021; e-mail (photo or scan) to yu001@uni-mainz.de by start of lecture.

Please note how long it took you to solve each problem.

- 4-1, 12 pts. Spinor space. Use the explicit form of the Pauli matrices to compute the eigenvalues of $p \cdot \sigma$ and $p \cdot \bar{\sigma}$, where $\sigma^{\mu} = (1, \vec{\sigma})$ and $\bar{\sigma}^{\mu} = (1, -\vec{\sigma})$. Show that for an on-shell particle $(p^2 = m^2, p^0 > 0)$ that the eigenvalues are always positive. Obtain the explicit form of the spinor $u_s(p)$ for a particle moving in the $+\hat{x}$ direction.
- 4-2, 12 pts. Gordon identity (problem 3.2 of Peskin and Schroeder). Derive the Gordon identity,

$$\bar{u}_r(p')\gamma^{\mu}u_s(p) = \bar{u}_r(p')\left(\frac{p'^{\mu} + p^{\mu}}{2m} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}\right)u_s(p)$$
(1)

for q = p' - p. You can use the constraint $(p - m)u_s(p) = 0$ on the spinor from the Dirac equation.

- 4-3, 12 pts. Lorentz transformations of bilinear spinor contractions. Given that $\Lambda_{1/2}^{-1}\gamma^{\mu}\Lambda_{1/2} = \Lambda^{\mu}{}_{\nu}\gamma^{\nu}$ for the Dirac matrices γ^{μ} and defining $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = -\frac{i}{4}\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}$, show that under a Lorentz transformation
 - A, 6 pts. $\bar{\psi}\gamma_5\psi \to \det(\Lambda)\bar{\psi}\gamma_5\psi$,
 - B, 6 pts. $\bar{\psi}\gamma^{\mu}\gamma_5\psi \rightarrow \det(\Lambda)\Lambda^{\mu}{}_{\nu}\bar{\psi}\gamma^{\nu}\gamma_5\psi$.

[Aside: The first fermion bilinear is a pseudoscalar contraction, and the second fermion bilinear is a pseudovector contraction. In general, $\det(\Lambda) = +1$ for continuous Lorentz transformations, but we can also have $\det(\Lambda) = -1$ if we perform a discrete Lorentz transformation such as a spatial reflection (known as parity).]

4-4, 24 pts. Practice with Dirac algebra (part 1). Evaluate the following products of γ matrices with contracted indices. (Hint: See equation 5.9 of Peskin and Schroeder for some solutions.)

A, 4 pts. $\gamma^{\mu}\gamma_{\mu}$ B, 4 pts. $\gamma^{\mu}\gamma^{\nu}\gamma_{\mu}$ C, 4 pts. $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma_{\mu}$ D, 4 pts. $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{\mu}$ E, 4 pts. $(\gamma_5)^2$ F, 4 pts. Define

$$P_L = \frac{1_{4 \times 4} - \gamma_5}{2} \tag{2}$$

$$P_R = \frac{1_{4 \times 4} + \gamma_5}{2} \ . \tag{3}$$

Show that
$$(P_L)^2 = P_L$$
, $(P_R)^2 = P_R$, and $P_L P_R = 0$.

 $4\text{-}5,\,40$ pts. Majorana fermions. We start with the Weyl equation,

$$i\bar{\sigma}\cdot\partial\chi = 0 , \qquad (4)$$

which is a relativistic equation for a massless fermion field that transforms as the upper two-component spinor ψ_L of the Dirac spinor. We will label the components of the field by a, $\chi_a(x)$, a = 1, 2.

A, 8 pts. Show that the massive Majorana field equation,

$$i\bar{\sigma}\cdot\partial\chi - im\sigma^2\chi^* = 0 \tag{5}$$

is relativistically invariant and that it implies the Klein-Gordon equation. Here, σ^2 is the second Pauli matrix.

B, 16 pts. To consider a Lagrangian that gives the Majorana field equation from variations of χ , we need to consider $\chi(x)$ as a classical Grassmann-valued field. Grassmann numbers are *anti-commuting* numbers, which means that $\alpha\beta = -\beta\alpha$ for any Grassmann numbers α and β . Note also that $\alpha^2 = 0$. We define the complex conjugate of a product of Grassmann numbers as $(\alpha\beta)^* = \beta^*\alpha^* = -\alpha^*\beta^*$. Show that the classical action

$$S = \int d^4x \left[\chi^{\dagger} i \bar{\sigma} \cdot \partial \chi + \frac{im}{2} \left(\chi^T \sigma^2 \chi - \chi^{\dagger} \sigma^2 \chi^* \right) \right]$$
(6)

is real (i.e. $S^* = S$), where $\chi^{\dagger} = (\chi^*)^T$. Also show that varying the action with respect to χ and χ^* (treating them as independent dynamical variables) gives the Majorana equation.

C, 16 pts. Quantize the Majorana theory by promoting $\chi(x)$ to a quantum field satisfying the canonical anticommutation relation,

$$\left\{\chi_a(\vec{x},t),\chi_b^{\dagger}(\vec{y},t)\right\} = \delta_{ab}\delta^{(3)}(\vec{x}-\vec{y}).$$
(7)

In other words, explicitly construct a Hermitian Hamiltonian and diagonalize it in terms of a set of creation and annihilation operators. (*Hint:* Compare $\chi(x)$ to the upper components of the quantized Dirac field.)