Appendix

Reference Formulae

This Appendix collects together some of the formulae that are most commonly
used in Feynman diagram calculations.

A.1 Feynman Rules

In all theories it is understood that momentum is conserved at each vertex, and
that undetermined loop momenta are integrated over: [d*p/(2m)*. Fermion
(including ghost) loops receive an additional factor of (—1), as explained on
page 120. Finally, each diagram can potentially have a symmetry factor, as
explained on page 93.

4 PR 2 1 o 2_& 4
¢* theory: [,—2(8“(;5) 2m¢ 4'¢

Scalar propagator: ——5———— = . (A1)
¢t vertex: = —i\ (A.2)
External scalar: >—=—— =1 (A.3)

(Counterterm vertices for loop calculations are given on page 325.)

Quantum Electrodynamics: £ = Y(Ig —m)p — 2(Fu)? - epyHPA,

) i +m)
D opagator: = A4
irac propagator -———;)————— 2 —m? e (A.4)
—igu
Phot tor: SN = A5
oton propagator 5 e (A.5)

(Feynman gauge; see page 297 for generalized Lorentz gauge.)
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QED vertex: = iQevy" (A.6)

@ = —1 for an electron)

= u®(p) (initial)

External fermions: (A7)
—@(p) (final)
= 2%(p) (initial)
External antifermions: (A.8)
= v*(p) (final)
=€,(p) (initial)
External photons: (A.9)

=¢€,(p) (final)

EECREES

(Counterterm vertices for loop calculations are given on page 332.)

Non-Abelian Gauge Theory:
L= —m)p — 1(0uAL — 0, A4L)* + g Ajyy
_ gfabC(auAg)AubAuc _ g2(feabAzAg)(fechpcAud)
The fermion and gauge boson propagators are the same as in QED, times
an identity matrix in the gauge group space. Similarly, the polarization of

external particles is treated the same as in QED, but each external particle
also has an orientation in the group space.

a, p
Fermion vertex: /j\ = 1igyHt® (A.10)

a, abc v
gr*[g" (k —p)*

|k

3-boson vertex: Py = + g (p — q)* (A.11)
b,y :1\ c,p +gPH(q_ k)V]
a, |4 b71/ —i92 [fabefcde(gupgua_guagup>
4-boson vertex: = 4 focefbde gy gpo ko) (A.12)

¢ d, o + fa.defbce (g;wgpo- _gppgua)]
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b,
Ghost vertex: % = gfobepH (A.13)

Q-
N
/

o

iﬁab
Ghost propagator: g .- s b

(Counterterm vertices for loop calculations are given on pages 528 and 532.)
Other theories. Feynman rules for other theories can be found on the fol-
lowing pages:

Yukawa theory page 118

Scalar QED page 312

Linear sigma model page 353
Electroweak theory pages 716, 743, 753

A.2 Polarizations of External Particles

The spinors u®(p) and v°(p) obey the Dirac equation in the form

0= (¢ —mu’(p) = (p)(¥—m)
= (F+m)v’(p) = 2°(p)(F+ m),

where g = y*p,.. The Dirac matrices obey the anticommutation relations

(A.15)

{7} = 29" (A.16)
We use a chiral basis,
0 o# -1 0
- 5 _
where
ot =(1,0), ot =(1,—0o). (A.18)

In this basis the normalized Dirac spinors can be written
Vp-o&’ vpon®
ww=(V225) vo=(LELT) e
Vp-o¢§ —vp-on
where € and 7 are two-component spinors normalized to unity. In the high-
energy limit these expressions simplify to

o 3(1-p-0)E - 11-p-o)°
u(p) ~ \/2"15(_2_(1 5. a)gs), v(p) ~ \/2“15(__2%(1 +Z3'U)Tls>' (A.20)
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Using the standard basis for the Pauli matrices,

1 _ 0 1 2 _ 0 —1 3 _ 1 0
o —(1 0), o —(i 0)’ o —(0 __1>, (A.21)

we have, for example, £° = ((1)) for spin up in the z direction, and £5 = ((1)) for
spin down in the z direction. For antifermions the physical spin is opposite to
that of the spinor: n°* = (é) corresponds to spin down in the z direction, and
SO on.

In computing unpolarized cross sections one encounters the polarization
sums

D w@EE =F+m, Y v @) (p) =§—m. (A.22)

For polarized cross sections one can either resort to the explicit formulae
(A.19) or insert the projection matrices

(1275>, (1“275>, (A.23)

which project onto right- and left-handed spinors, respectively. Again, for
antifermions, the helicity of the spinor is opposite to the physical helicity of
the particle.

Many other identities involving Dirac spinors and matrices can be found
in Chapter 3.

Polarization vectors for photons and other gauge bosons are convention-
ally normalized to unity. For massless bosons the polarization must be trans-
verse:

e’ = (0,¢), where p- e =0. (A.24)
If p is in the +2z direction, the polarization vectors are

1 1
e = —(0,1,7,0 et = —
\/‘i( Y )’ \/’é‘(
for right- and left-handed helicities, respectively.
In computing unpolarized cross sections involving photons, one can re-
place

0, 1a_i>0>a (A25)

Z e;e,, — —Guv» (A.26)

polarizations

by virtue of the Ward identity. In the case of massless non-Abelian gauge
bosons, one must also sum over the emission of ghosts, as discussed in Sec-
tion 16.3. In the massive case, one must in addition include the emission of
Goldstone bosons, as discussed in Section 21.1.




A.3 Numerator Algebra 805

A.3 Numerator Algebra

Traces of v matrices can be evaluated as follows:
tr(1) =4
tr(any odd # of v’s) =0
tr(y#v") = 4"
tr(v* P y7) = 4(9"" 977 — 9"* 9" + g7 9"") (A.27)
tr(%) =0
tr(7#4"7°) =0
tr(y#" 7P Y°) = —diePT
Another identity allows one to reverse the order of v matrices inside a trace:
tr(,y#fyufypfyﬂ .. ) = tr(- .. ,y”,ypfyu,yﬂ)_ (A.28)
Contractions of v matrices with each other simplify to:
'Y”'Yu =4
YA Y = =29
VA P = 49”7
VA AN Y = =27y

(A.29)

(These identities apply in four dimensions only; see the following section.)
Contractions of the € symbol can also be simplified:

Eaﬁ’yéeaﬁwg =-24

ePreng, = —66H, (A.30)
€O‘B”V€aﬁpa — _2(6ﬂp6u‘7 — 5”05”,,)

In some calculations, it is useful to rearrange products of fermion bilinears
by means of Fierz identities. Let uq,...,us be Dirac spinors, and let u;, =
%(1 — 7v®)u; be the left-handed projection. Then the most important Fierz
rearrangement formula is

(Tary*uar)(@srypuar) = —(Biry*uar)(UsLyuueL)- (A.31)
Additional formulae can be generated by the use of the following identities
for the 2 x 2 blocks of Dirac matrices:

(0")ap(0pu)vs = 2€a~€gs; (*)ap(Tu)vs = 2€arEps- (A.32)

In non-Abelian gauge theories, the Feynman rules involve gauge group
matrices t¢ that form a representation 7 of a Lie algebra G. The symbol G
also denotes the adjoint representation of the algebra. The matrices t* obey

[, 2% = if**te, (A.33)
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where the structure constants f2%¢ are totally antisymmetric. The invariants
C(r) and Cs(r) of the representation r are defined by .

trft*t®] = C(r)6%, %% = Co(r) - 1. (A.34)
These are related by

Clr) = :((Q) Ca(r), (A.35)

where d(r) is the dimension of the representation. Traces and contractions of
the t* can be evaluated using the above identities and their consequences:
t44°t® = [Ca(r) — $C2(G))°
fa,cdfbcd — Cz(G)é*a.b (A36)
fabctbtc — %iCZ(G)ta .
For SU(N) groups, the fundamental representation is denoted by N, and
we have
1 N2 -1
CN)=3,  GN)=—5— C(G)=C(G)=N. (A.37)
The following relation, satisfied by the matrices of the fundamental represen-
tation of SU(N), is also very helpful:
1

1
()i (@ )ke = 5 (6i25kj - ']\75ij5ke)- (A.38)

A.4 Loop Integrals and Dimensional Regularization

To combine propagator denominators, introduce integrals over Feynman pa-
rameters:

1

1 (n—1)!
—— = [dzy---dz, 60> z;—1 = (A.39
A1 Ay Ap 0/ ' (> ) (2141 + 2242 + - - 2o An] (5.59)
In the case of only two denominator factors, this formula reduces to
1 / 1
— = [dx . (A.40)
AB 0/ [zA + (1——$)B]2

A more general formula in which the A; are raised to arbitrary powers is given
in Eq. (6.42).

Once this is done, the bracketed quantity in the denominator will be a
quadratic function of the integration variables p!. Next, complete the square
and shift the integration variables to absorb the terms linear in p. For a
one-loop integral, there is a single integration momentum p*, which is shifted
to a momentum variable ¢#. After this shift, the denominator takes the form
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(£2 — A)™. In the numerator, terms with an odd number of powers of £ vanish
by symmetric integration. Symmetry also allows one to replace

e éﬁg“", (A.41)
1
Ve 2\2 ( pv po up vo po vp
2P0° — d(d+2)(£ 2 (9" gP7 + g"Pg*® + gtog )- (A.42)

(Here d is the spacetime dimension.) The integral is'most conveniently evalu-
ated after Wick-rotating to Euclidean space, with the substitution

0O =i 2 =-1E (A.43)

Alternatively, one can use the following table of d-dimensional integrals in
Minkowski space:

/(dde 1 (=" T(n—9) (i) ~5 (A.44)

om)d (2 — A)n = Am@2 T(n) \A
die 2 (=)~ lidT(n—%-1)/1 _d_

/(zw)d (@ —A)y — (4m)d/2 D) F(;) (Z) ? (A.45)
die gy (1)l g I(n—9%-1) /1 —d_

Jom @y s T &) 4
die ()2 (=1)"i d(d+2) D(n—2-1) 1 1\n—5§—

IR TR e e ve el ) MO
i peeeeere (1) D(n—2-2) 11\n—§-2

/(27r)d (g2 — A)n - (47T)d/2 I(n) (-A_)

X l(g“”g”" +g"g"7 +g"7g?)  (A48)

4
If the integral converges, one can set d = 4 from the start. If the integral

diverges, the behavior near d = 4 can be extracted by expanding

1 2_% d
(K) =1-(2-5)logA+---. (A.49)

One also needs the expansion of I'(z) near its poles:

I(z) = % v+ 0() (A.50)
near z = 0, and
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near r = —n. Here 7 is the Euler-Mascheroni constant, v ~ 0.5772. The
following combination of terms often appears in calculations:

r@2-%) 1\2—%
(4(77)(52) (Z) ? = % — (log A+~ — log(4m))+0O(e), (A.52) |
with e =4 —d.

Notice that A is positive if it is a combination of masses and spacelike mo-
mentum invariants. If A contains timelike momenta, it may become negative.
Then these integrals acquire imaginary parts, which give the discontinuities
of S-matrix elements. To compute the S-matrix in a physical region, choose
the correct branch of the function by the prescription

(A77F L () s

where —ie (not to be confused with € in the previous paragraph!) gives a tiny
negative imaginary part.

Traces in Eq. (A.27) that do not involve ¥° are independent of dimen-
sionality. However, since

9" g =6 =d (A.54)
in d dimensions, the contraction identities (A.29) are modified:
Yy =d
Y v = —(d-2)7"
YA VP, = 4g"F — (4=d)y"~*
YAV = =297 + (d=d)v Py

(A.55)

A.5 Cross Sections and Decay Rates

Once the squared matrix element for a scattering process is known, the dif-
ferential cross section is given by

do — 1 ( d3pf 1 )
2EA2E3 |va—vg| f (2m)3 2E¢ (A.56)
x |M(pa,p5 — {2} @1)*6@ (pat+ps — S py).

The differential decay rate of an unstable particle to a given final state is

3
- 5—7}1: (g%f;‘;) |M(ma — {Pf})|2 @2m)*6™W(pg — S py). (ABT)

For the special case of a two-particle final state, the Lorentz-invariant phase
space takes the simple form

(Ifl/ gfﬁ ﬁ;)(zw)‘*é(‘“(zpi ->opf) = /dil;m 8%(22) (A.58)
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where |p| is the magnitude of the 3-momentum of either particle in the center-
of-mass frame.

A.6 Physical Constants and Conversion Factors
Precisely known physical constants:

c=2.998 x 10*° cm/s
B =6.582 x 10722 MeV's
e=—1.602 x 1071 C
e? 1
o= =
dthe ~ 137.04

GF__ 1166 x 10-° Gev—2
(hc)®

= 0.00730

The values of the strong and weak interaction coupling constants depend on
the conventions used to define them, as explained in Sections 17.6 and 21.3.
For the purpose of estimation, however, one can use the following values:

a5(10 GeV) = 0.18
as(mz) =0.12
sin? 0, = 0.23
Particle masses (times c?):
e: 0.5110 MeV p: 938.3 MeV
B 105.6 MeV n: 939.6 MeV
T: 1784 MeV 7 : 139.6 MeV
W*: 80.2 GeV 7% : 135.0 MeV
=79 91.19 GeV
Useful combinations:
Bohr radius: ag = h =5.292 x 107% cm
amec
electron Compton wavelength: A= = 3.862 x 107 cm
e
: . ah -13
classical electron radius: Te = =2.818 x 10 cm
MeC
. 8mr2
Thomson cross section: or = 5 = 0.6652 barn

dra’ 86.8 nbarn

ihilati ss section: 1R = =
annihilation cro ctio SE2 " (Bom in GoV)?
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Conversion factors:

(1 GeV)/c? =1.783 x 107 g
(1 GeV)™*(hc) = 0.1973 x 10713 cm = 0.1973 fm;
(1 GeV)™2%(hc)® = 0.3894 x 1077 cm® = 0.3894 mbarn
1 barn = 10™%* ¢m?
(1 volt/meter)(ehc) = 1.973 x 10™2° GeV?
(1 tesla)(ehc?) = 5.916 x 10717 GeV?

A complete, up-to-date tabulation of the fundamental constants and the prop-
erties of elementary particles is given in the Review of Particle Properties,
which can be found in a recent issue of either Physical Review D or Physics
Letters B. The most recent Review as of this writing is published in Physical
Review D50, 1173 (1994).




